You are the father! Effects of Costa Rica's Responsible Paternity Law on families

José Alfonso Muñoz-Alvarado

Toulouse School of Economics

June 27, 2022

Paternity affects mostly women's labor outcomes.

- Paternity affects mostly women's labor outcomes.
- ► Gap in labor market participation can be explained through paternity involvement.

- Paternity affects mostly women's labor outcomes.
- ► Gap in labor market participation can be explained through paternity involvement.
- > Paternity laws mostly focus on sharing the weight of child care between men and women:
 - Paternity leaves.

- Paternity affects mostly women's labor outcomes.
- ► Gap in labor market participation can be explained through paternity involvement.
- > Paternity laws mostly focus on sharing the weight of child care between men and women:
 - Paternity leaves.
- ▶ But, as the mother is the main caretaker, child-related laws also affect her.

- Paternity affects mostly women's labor outcomes.
- ► Gap in labor market participation can be explained through paternity involvement.
- > Paternity laws mostly focus on sharing the weight of child care between men and women:
 - Paternity leaves.
- ▶ But, as the mother is the main caretaker, child-related laws also affect her.

Research question:

How does child-related paternity laws affect women's labor outcomes?

Objective: evaluate Costa Rica's Responsible Paternity Law in 2001.

Objective: evaluate Costa Rica's Responsible Paternity Law in 2001.

Non-married mothers (single/cohabited) can automatically declare father of their newborn child.

Objective: evaluate Costa Rica's Responsible Paternity Law in 2001.

Non-married mothers (single/cohabited) can automatically declare father of their newborn child.

 \implies Can demand monetary child support.

Objective: evaluate Costa Rica's Responsible Paternity Law in 2001.

Non-married mothers (single/cohabited) can automatically declare father of their newborn child.

 \implies Can demand monetary child support.

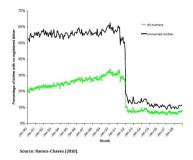
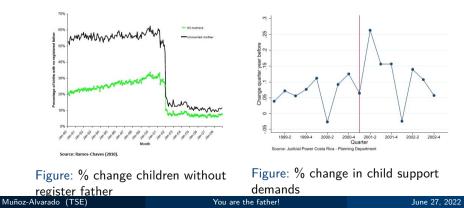



Figure: % change children without register father Muñoz-Alvarado (TSE) You

Objective: evaluate Costa Rica's Responsible Paternity Law in 2001.

Non-married mothers (single/cohabited) can automatically declare father of their newborn child.

 \implies Can demand monetary child support.

2/14

Specifically,

Specifically,

▶ How does the paternity law changed labor decisions for men and women?

Specifically,

- How does the paternity law changed labor decisions for men and women?
- Were there other side-effects?

Specifically,

- ▶ How does the paternity law changed labor decisions for men and women?
- Were there other side-effects?

Specifically,

- ▶ How does the paternity law changed labor decisions for men and women?
- Were there other side-effects?

Results:

Empirical evidence:

Specifically,

- How does the paternity law changed labor decisions for men and women?
- Were there other side-effects?

- Empirical evidence:
 - Decrease in men's labor participation.
 - Decrease in men and women's weekly paid hours.

Specifically,

- How does the paternity law changed labor decisions for men and women?
- Were there other side-effects?

- Empirical evidence:
 - Decrease in men's labor participation.
 - Decrease in men and women's weekly paid hours.
- Structural model: two effects

Specifically,

- How does the paternity law changed labor decisions for men and women?
- Were there other side-effects?

- Empirical evidence:
 - Decrease in men's labor participation.
 - Decrease in men and women's weekly paid hours.
- Structural model: two effects
 - 1. Couple selection: non-married woman can receive child support without getting married.

Specifically,

- How does the paternity law changed labor decisions for men and women?
- Were there other side-effects?

Results:

- Empirical evidence:
 - Decrease in men's labor participation.
 - Decrease in men and women's weekly paid hours.
- Structural model: two effects
 - 1. Couple selection: non-married woman can receive child support without getting married.
 - 2. Intra-household: woman receives a larger share of household income in a couple.

Literature

1. Introduction

- 2. Context and Data
 - Institutional context
 - Data
- 3. Empirical evidence: DiD
- 4. Structural Model
- 5. Conclusion

Abortion is not legal in Costa Rica.

Costa Rican context

Abortion is not legal in Costa Rica.

► Paternity law:

Abortion is not legal in Costa Rica.

- ► Paternity law:
 - Non-married mothers automatically declare father of their newborn child.
 - Children with a recognized father can demand child support.

Abortion is not legal in Costa Rica.

- ► Paternity law:
 - Non-married mothers automatically declare father of their newborn child.
 - Children with a recognized father can demand child support.
- ► Ramos (2010):
 - 5 10% fall in birth rate and total fertility rates.
 - Drop in marriages: link with unplanned pregnancies.

Individual and household level data.

- Individual and household level data.
- Structure of household available: head, partner, children, ...

- Individual and household level data.
- Structure of household available: head, partner, children, ...

Subsample: 33,618 households

- Individual and household level data.
- Structure of household available: head, partner, children, ...

Subsample: 33,618 households

► Single, cohabited or married.

- Individual and household level data.
- Structure of household available: head, partner, children, ...
- Subsample: 33,618 households
 - ► Single, cohabited or married.
 - ▶ Women at most 33 y.o. in 2002.

- Individual and household level data.
- Structure of household available: head, partner, children, ...
- Subsample: 33,618 households
 - ► Single, cohabited or married.
 - ▶ Women at most 33 y.o. in 2002.
 - Men at most 40 y.o.

Objective: impact of paternity law in men and women labor outcomes.

Objective: impact of paternity law in men and women labor outcomes.

	T = 0 (before law)	T=1 (after law)
G = 0 (Married)	No child/child born before 2002	Child born after 2002
${\sf G}=1$ (Non-married)	No child / child born before 2002	Child born after 2002

Objective: impact of paternity law in men and women labor outcomes.

	T = 0 (before law)	T=1 (after law)
G = 0 (Married)	No child/child born before 2002	Child born after 2002
${\sf G}=1$ (Non-married)	No child / child born before 2002	Child born after 2002

But,

Objective: impact of paternity law in men and women labor outcomes.

	T = 0 (before law)	T=1 (after law)
G = 0 (Married)	No child/child born before 2002	Child born after 2002
G=1 (Non-married)	No child / child born before 2002	Child born after 2002

But,

1. Repeated cross-sections: only D = D(T) is observed.

Empirical evidence: Differences in Differences

Objective: impact of paternity law in men and women labor outcomes.

	T = 0 (before law)	${\sf T}=1$ (after law)		
G = 0 (Married)	No child/child born before 2002	Child born after 2002		
G=1 (Non-married)	No child / child born before 2002	Child born after 2002		

But,

- 1. Repeated cross-sections: only D = D(T) is observed.
- 2. Married couples get treated too.

Empirical evidence: Differences in Differences

Objective: impact of paternity law in men and women labor outcomes.

	T = 0 (before law)	${\sf T}=1$ (after law)		
G = 0 (Married)	No child/child born before 2002	Child born after 2002		
G = 1 (Non-married)	No child / child born before 2002	Child born after 2002		

But,

- 1. Repeated cross-sections: only D = D(T) is observed.
- 2. Married couples get treated too.

Fuzzy Diff-in-Diff (de Chaisemartin & D'Haultfœuille, 2018)

"Treatment group switchers": treatment group units going from non-treated to treated.

 $S = \{D(0) < D(1), G = 1\}$

"Treatment group switchers": treatment group units going from non-treated to treated.

```
S = \{D(0) < D(1), G = 1\}
```

Non-married with/out children before $2002 \rightarrow$ child after 2002.

"Treatment group switchers": treatment group units going from non-treated to treated.

```
S = \{D(0) < D(1), G = 1\}
```

Non-married with/out children before $2002 \rightarrow$ child after 2002.

LATE estimator for labor outcomes:

$$\Delta = E(Y(1) - Y(0)|S, T = 1)$$

	Labor participation		Weekly paid hours		
	Women Men		Women	Men	
LATE	0.03	-0.08**	-5.57*	-4.49**	
	(0.045)	(0.037)	(2.935)	(2.040)	
Controls	Yes	Yes	No	No	
Ν	31,430	30,995	10,367	21,690	

Bootstrap S.E. 150 times. Controls include individual and household demographics and geographical variables. *:10% significance, **: 5% significance, ***: 1% significance.

Follow Choo & Seitz (2013) two-stage model:

Follow Choo & Seitz (2013) two-stage model: 1. Household formation decision: $k \in \text{single } (s)$, cohabited (c) or married(u).

Follow Choo & Seitz (2013) two-stage model:

1. Household formation decision: $k \in \text{single } (s)$, cohabited (c) or married(u).

Decision taken given potential household's resource share and potential utilities.

Follow Choo & Seitz (2013) two-stage model:

- 1. Household formation decision: $k \in \text{single } (s)$, cohabited (c) or married(u).
 - Decision taken given potential household's resource share and potential utilities.
- 2. Intra-household allocation: labor decisions and consumption.

Follow Choo & Seitz (2013) two-stage model:

- 1. Household formation decision: $k \in \text{single } (s)$, cohabited (c) or married(u).
 - Decision taken given potential household's resource share and potential utilities.
- 2. Intra-household allocation: labor decisions and consumption.
 - Collective household model for $k = \{c, u\}$

Follow Choo & Seitz (2013) two-stage model:

- 1. Household formation decision: $k \in \text{single } (s)$, cohabited (c) or married(u).
 - Decision taken given potential household's resource share and potential utilities.
- 2. Intra-household allocation: labor decisions and consumption.
 - Collective household model for $k = \{c, u\}$

$$\max_{h_m,C_m,h_f,C_f} \lambda(\cdot) U^m (1-h_m,C_m) (1-\lambda(\cdot)) U^f(h_f,C_f)$$

s.t. budget constraint

Follow Choo & Seitz (2013) two-stage model:

- 1. Household formation decision: $k \in \text{single } (s)$, cohabited (c) or married(u).
 - Decision taken given potential household's resource share and potential utilities.
- 2. Intra-household allocation: labor decisions and consumption.
 - Collective household model for $k = \{c, u\}$

$$\max_{h_m,C_m,h_f,C_f} \lambda(\cdot) U^m (1-h_m,C_m)(1-\lambda(\cdot)) U^f(h_f,C_f)$$

s.t. budget constraint

Second Welfare Theorem: assuming Pareto-efficient outcomes.

 \implies decentralized with *sharing functions*:

$$\Psi^m_{couple}(\cdot)$$
 & $\Psi^f_{couple}(\cdot)$

- Man has a bigger incentive for being in couple (share of costs, economies of scale)

- Man has a bigger incentive for being in couple (share of costs, economies of scale)

$$\downarrow \Psi^m_{couple}(\cdot) \implies \uparrow \Psi^f_{couple}(\cdot)$$

- ▶ Man has a bigger incentive for being in couple (share of costs, economies of scale)

$$\downarrow \Psi^m_{couple}(\cdot) \implies \uparrow \Psi^f_{couple}(\cdot)$$

Selection effect: woman has a lower incentive to get into a couple.

- ▶ Man has a bigger incentive for being in couple (share of costs, economies of scale)

$$\downarrow \Psi^m_{couple}(\cdot) \implies \uparrow \Psi^f_{couple}(\cdot)$$

Selection effect: woman has a lower incentive to get into a couple.

 \implies new couples differ from those before the law.

- ▶ Man has a bigger incentive for being in couple (share of costs, economies of scale)

$$\downarrow \Psi^m_{couple}(\cdot) \implies \uparrow \Psi^f_{couple}(\cdot)$$

Selection effect: woman has a lower incentive to get into a couple.

 \implies new couples differ from those before the law.

▶ Intra-household effect: woman agrees to be in a couple if higher $\Psi_{couple}^{f}(\cdot)$:

- ▶ Man has a bigger incentive for being in couple (share of costs, economies of scale)

$$\downarrow \Psi^m_{couple}(\cdot) \implies \uparrow \Psi^f_{couple}(\cdot)$$

Selection effect: woman has a lower incentive to get into a couple.

 \implies new couples differ from those before the law.

▶ Intra-household effect: woman agrees to be in a couple if higher $\Psi_{couple}^{f}(\cdot)$:

$$\uparrow \Psi^{f}_{couple}(\cdot) \implies \text{income effect.}$$

1st stage: multinomial logit of marital status

Table: Average Marginal Effects - Child after 2002

	All sample	Men	Women
Single	0.02***	-0.16***	0.08***
	(0.005)	(0.011)	(0.005)
Cohabitated	0.05***	0.11***	0.03***
	(0.006)	(0.007)	(0.006)
Married	-0.06***	0.05***	-0.10***
	(0.007)	(0.009)	(0.007)
Controls	Yes	Yes	Yes
Ν	59,337	29,477	29,860

S.E. clustered at the household year level.

Controls include individual and household demographics and geographical variables.

*:10% significance, **: 5% significance, ***: 1% significance.

1st stage: multinomial logit of marital status

Table: Average Marginal Effects - Child after 2002

	All sample	Men	Women
Single	0.02***	-0.16***	0.08***
	(0.005)	(0.011)	(0.005)
Cohabitated	0.05***	0.11***	0.03***
	(0.006)	(0.007)	(0.006)
Married	-0.06***	0.05***	-0.10***
	(0.007)	(0.009)	(0.007)
Controls	Yes	Yes	Yes
Ν	59,337	29,477	29,860

S.E. clustered at the household year level.

Controls include individual and household demographics and geographical variables.

*:10% significance, **: 5% significance, ***: 1% significance.

Structural equations

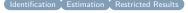
The structural equations recovered from the restricted reduced-form estimation are:

The structural equations recovered from the restricted reduced-form estimation are:

Female labor supply:

$$\begin{split} h_{f,T} &= \kappa_f + \underbrace{63.371}_{(34.577)} \log w_f + \underbrace{1.179}_{(0.053)} y^f \\ h_{f,C} &= \kappa_f + \underbrace{172.157}_{(177.247)} \log w_f + \underbrace{1.826}_{(0.0559)} y^f \end{split}$$

(1)


The structural equations recovered from the restricted reduced-form estimation are:

Female labor supply:

$$\begin{array}{ll} h_{f,T} &= \kappa_f + \underbrace{63.371}_{(34.577)} \log w_f + \underbrace{1.179}_{(0.053)} y^f \\ h_{f,C} &= \kappa_f + \underbrace{172.157}_{(177.247)} \log w_f + \underbrace{1.826}_{(0.0559)} y^f \end{array}$$

Male labor participation:

$$\begin{split} & w_{m,T}^r &= \kappa_m - \underbrace{0.086}_{(0.033)} \log w_f - \underbrace{4.641}_{(1.787)} y \\ & w_{m,C}^r &= \kappa_m - \underbrace{0.027}_{(0.024)} \log w_f - \underbrace{2.536}_{(1.260)} y \end{split}$$

(1)

(2)

Household sharing function when both work:

$$\Psi_{T} = \kappa_{1} + \frac{1.001}{(0.416)} w_{m} - \frac{53.746}{(29.222)} \log w_{f} + \frac{0.996}{(0.021)} y$$

$$\Psi_{C} = \kappa_{1} + \frac{1.021}{(0.926)} w_{m} - \frac{94.299}{(97.0176)} \log w_{f} + \frac{1.008}{(0.015)} y$$

(3)

Household sharing function when both work:

$$\Psi_{T} = \kappa_{1} + \frac{1.001}{(0.416)} w_{m} - \frac{53.746}{(29.222)} \log w_{f} + \frac{0.996}{(0.021)} y$$

$$\Psi_{C} = \kappa_{1} + \frac{1.021}{(0.926)} w_{m} - \frac{94.299}{(97.0176)} \log w_{f} + \frac{1.008}{(0.015)} y$$

Household sharing function when male does not work:

$$F(\Psi)_{T} = \kappa_{0} + 0.905 \left(1.001 \ w_{m} - 53.746 \ \log w_{f} + 0.996 \ y \right)$$

$$F(\Psi)_{C} = \kappa_{0} + 0.972 \left(1.021 \ w_{m} - 94.299 \ \log w_{f} + 1.008 \ y \right)$$

(3)

(4)

Conclusions and next steps

Effect of paternity law in men and women?

Effect of paternity law in men and women?

Empirical evidence:

Decrease on men's labor participation, men and women's labor supply.

Effect of paternity law in men and women?

Empirical evidence:

- Decrease on men's labor participation, men and women's labor supply.
 Structural results:
- Couple formation effect.
- Intra-household effect.

Effect of paternity law in men and women?

Empirical evidence:

Decrease on men's labor participation, men and women's labor supply.

Structural results:

- Couple formation effect.
- Intra-household effect.

Next steps

- Robustness check for structural estimation:
 - Endogenize two estimations: inverse Mill's ratio for matching selection.
 - Effect for women with different outside option: more education, older, more personal non-labor income.

Comments? Questions?

Contact: jalfonso.munoza@tse-fr.eu

Two main literatures:

- 1. Paternity laws:
 - Ekberg et al. (2013), Reynoso (2018), Goussé and Leturq (2018), Chiappori et al. (2017)

Empirical analysis of a natural experiment related to children's rights.

- 2. Collective Household Models:
 - Survey by Chiappori & Mazzoto (2017)

Empirical evidence on of households' decision-making and formation.

► Application: Fuzzy Differences-in-Differences (de Chaisemartin & D'Haultfœuille,2018)

Data: Households' summary stats (Back)

Mandahla	01	M	Ctul Davi	N.4.:	N4
Variable	Obs	Mean	Std. Dev.	Min	Max
Marital status					
Single	33,618	0.235		0	1
Cohabited	33,618	0.293		0	1
Married	33,618	0.472		0	1
Nb members in HH	33,618	3.609	1.311	1	6
Children					
None	33,618	0.190		0	1
One	33,618	0.265		0	1
Two	33,618	0.310		0	1
Three or more	33,618	0.234		0	1
Child pre 2002	33,618	0.638		0	1
Child post 2002	33,618	0.359		0	1
Outside CV, rural are	33,618	0.447		0	1
Outside CV, urban are	33,618	0.227		0	1
CV, rural zone	33,618	0.149		0	1
CV, urban zone	33,618	0.177		0	1
Total household income	33,618	285.617	182.070	0	1,098.226

Variable	Obs	Mean	Std. Dev.	Min	Max
Single	33,618	0.112		0	1
Age	29,477	33.099	6.900	19	49
Years schooling	29,477	7.267	3.483	0	19
Diploma					
None	29,477	0.032		0	1
School	29,477	0.567		0	1
High School	29,477	0.306		0	1
College	29,477	0.095		0	1
Employed	29,477	0.705		0	1
Labor hours	20,791	52.832	10.288	4	98

Variable	Obs	Mean	Std. Dev.	Min	Max
Single	33,618	0.123		0	1
Age	29,860	28.286	5.065	19	40
Years schooling	29,860	7.377	3.324	0	19
Diploma					
None	29,860	0.019		0	1
School	29,860	0.563		0	1
High School	29,860	0.327		0	1
College	29,860	0.090		0	1
Employed	29,860	0.333		0	1
Labor hours	9,936	38.507	17.840	1	97

 $D_{gt} \sim D|G = g, T = t$ **1. Fuzzy setting**:

 $E(D_{11}) > E(D_{10})$ and $E(D_{11}) - E(D_{10}) > E(D_{01}) > E(D_{00})$

2. Stable percentage of treated units in the control group:

$$P(D_{01} = d) = P(D_{00} = d) \in (0, 1)$$

3. Treatment participation equation: $D = \mathbf{1}\{V \ge v_{GT}\}, V \perp T | G$

1 and 3 \implies switch treatment in one direction: non-treated to treated.

"Treatment group switchers": $S = \{D(0) < D(1), G = 1\}$

Wald TC:

$$W_{TC} = \frac{E(Y_{11}) - E(Y_{10} + \delta_{D_{10}})}{E(D_{11}) - E(D_{10})}$$

where $\delta_d = E(Y_{d01}) - E(Y_{d00})$ accounts for the effect of time on the outcome in the treatment group.

Under assumptions 1-3 and:

4. Conditional common trends: $\forall d \in S(D)$ and all $t \in \{0, ..., \overline{t}\}$,

$$E\{Y(d)|G, T = 1, D(0) = d\} - E\{Y(d)|G, T = 0, D(0) = d\}$$

does not depend on G.

$$\implies W_{TC} = \Delta$$

Wald CIC:

$$W_{CIC} = \frac{E(Y_{11}) - E(Q_{D_{10}}(Y_{10}))}{E(D_{11}) - E(D_{10})}$$

where $Q_{d(y)}(y) = F_{Y_{d01}}^{-1} \circ F_{Y_{d00}}(y)$ is the quantile-quantile transformation of Y. Under assumptions 1-3 and:

- 5. Monotonicity and time-invariance of unobservables
- 6. Data restrictions:
 - Outcome has common support in each subgroup.
 - Outcome continuous with positive density in each subgroup.

$$\implies W_{CIC} = \Delta$$

Following Choo & Seitz (2013) two stage model:

- 1. Household formation decision: single, cohabited or married.
 - Knowledge of wages and assets.
 - Determination of the household's bargaining function.
- 2. Intrahousehold allocation:
 - Labor decisions: supply for women and participation for men.

I present the model recursively.

Let:

- ▶ $k \in \{s, c, u\}$ be household type: single, cohabitated, married.
- C_i be private consumption for individual i = m, f
- \blacktriangleright *h_i* labor supply.

The utility of *i* is

$$U_{k}^{i}(1-h_{i}, C_{i}) + \Gamma_{i,k} + \epsilon_{i,k}, \ i = m, f; \ k = s, c, u$$

where $\Gamma_{i,k}$ captures invariant gains of *i* in household of type *k* (Choo & Siow, 2006).

Second stage: Intrahousehold allocation Back

Single households: For single individuals, the maximization problem is ordinary:

$$\max_{h_i,C_i} U_s^i(1-h_i,C_i) + \Gamma_{i,s} + \epsilon_{i,s}, \ i = m,f$$
(5)

s.t.

$$C_i = w_i h_i + y_s$$

where

- ▶ *w_i* is the wage
- y_s is non-labor income when single. It includes monetary child support: received by the mother and paid by the father.

Cohabited households: For cohabited households the maximization problem follows Blundell, Chiappori, Magnac and Meghir (BCMM, 2007):

$$\max_{h_m, C_m, h_f, C_f} U^m (1 - h_m, C_m) + \Gamma_{m,k} + \epsilon_{m,k}, \ k = c, u$$
(6)

s.t.

$$\begin{aligned} U_k^f(1 - h_f, C_f) + \Gamma_{f,k} + \epsilon_{f,k} &\geq U_s^f(1 - h_f, C_f) + \Gamma_{f,s} + \epsilon_{f,s} , \ k = c, u \\ U_k^m(1 - h_m, C_m) + \Gamma_{m,k} + \epsilon_{m,k} &\geq U_s^m(1 - h_m, C_m) + \Gamma_{m,s} + \epsilon_{m,s} , \ k = c, u \\ C_m + C_f &= w_m h_m + w_f h_f + y_k , \ k = c, u \\ h_m \in \{0, 1\}, \ 0 \leq h_f \leq 1 \end{aligned}$$

Second Welfare Theorem: assuming Pareto-efficient outcomes.

 \implies decentralized with *sharing functions*:

 $\Psi_k^m(\cdot) \& \Psi_k^f(\cdot)$

Decentralized model Back

Solution: depends on the man's labor participation.

► If man participates: the woman solves

$$\max_{h_f, C_f} U_k^f (1 - h_f, C_f), \ k = c, u$$
(7)

$$s.t. \begin{cases} C_f = w_f h_f + \Psi_k^f(w_f, w_m, y_k) \\ 0 \le h_f \le 1 \end{cases}$$
(7a)
(7b)

Her labor supply function is:

$$H^{f}[w_{f}, \Psi_{f}(w_{f}, w_{m}, y)] = h^{f}(w_{f}, w_{m}, y)$$

If man does not participate:

$$H^{f}[w_{f}, F(\Psi_{f}(w_{f}, w_{m}, y))] = h^{f}(w_{f}, w_{m}, y)$$

First stage: Household formation Back

For each household type, *i* obtains an indirect utility function:

$$V_{i,s}(\epsilon_{i,s}) = Q_{i,s}[w_i^*, y_s] + \Gamma_{i,s} + \epsilon_{i,s}$$
$$V_{i,c}(\epsilon_{i,c}) = Q_{i,c}[\Psi_c^i(w_f^*, w_m^*, y_c)] + \Gamma_{i,c} + \epsilon_{i,c}$$
$$V_{i,u}(\epsilon_{i,u}) = Q_{i,u}[\Psi_u^i(w_f^*, w_m^*, y_u)] + \Gamma_{i,u} + \epsilon_{i,u}$$

The optimal choice is:

$$V_i^* = \max[V_{i,s}, V_{i,c}, V_{i,u}]$$

And the probability for each type k is:

$$\pi_{i,k} = \frac{\exp(V_{i,k})}{\sum_{l \in s, c, u} \exp(V_{i,l})}$$

Identification

Observed:

- ▶ Wages: w_f and w_m
- Female labor supply $h^f(w_f, w_m, y)$
- ▶ Male participation decision $\gamma^m(w_f, w_m, y) \in \{0, 1\}$
- Non-labor income y

Need to recover:

- Sharing rule $\Psi(w_f, w_m, y)$
- Structural female labor supply $H^{f}(w_{f}, \Psi_{f}(\cdot))$

BCMM (2007) **proposition 2**: Recover $\Psi(\cdot)$ and $H^{f}(\cdot)$

Proposition 2: With a male participation function $\gamma(w_f, y)$, the following restrictions recover the sharing rule and preferences **Restrictions**:

 $-\Psi_{w_m} + A\Psi_y = A - 1 \qquad A(w_f, w_m, y) = \frac{1 - \Psi_{w_m}}{1 - \Psi_y} = \frac{h_{w_m}^f}{h_y^f}$ $-\Psi_{w_m} + B\Psi_y = \frac{B}{F'} \qquad B(w_f, w_m, y) = \frac{F'(\Psi_{w_m})}{1 - F'(\Psi_y)} = \frac{h_{w_m}^f}{h_y^f}$ $(\Psi_y + \gamma_y \Psi_{w_m}) = \frac{\gamma_y}{1 - F'}$ $\Psi_{w_m} = \frac{\gamma_{w_f}}{\gamma_y} \Psi_y$ System of PDE: $\Psi_{w_f}, \Psi_{w_m}, \Psi_y, F' \implies$ recover $\Psi(\cdot)$ and $H^f(\cdot)$

Two estimations:

- 1. Man's participation equation: probit.
- 2. Woman's labor supply: truncated regression, separately for those whose men works or not.

Two problems:

- 1. Unobserved wages for non-working spouses \rightarrow imputation with exogenous variables.
- 2. No data for Responsible Paternity Law.
 - ▶ 2 groups: households with child born after 2002 vs no child born after 2002.
 - Estimate the model in each group and compare the structural parameters.

3 equations:

Female labor hours if male participates

$$h_{i,t}^f = A_{0,t}^f + A_m w_{i,t}^m + A_f \ln w_{i,t}^f + A_y y_{i,t} + \mathbf{A} \cdot \mathbf{X}' + u_{1,i,t}$$

Female labor hours if male does not participate

$$h_{i,t}^{f} = a_{0,t}^{f} + a_{m}w_{i,t}^{m} + a_{f}\ln w_{i,t}^{f} + a_{y}y_{i,t} + \mathbf{a} \cdot \mathbf{X}' + u_{0,i,t}$$

Male labor participation

$$p_{i,t}^m = b_{p,t}^m + b_m^m w_{i,t}^m + b_f^m \ln w_{i,t}^f + b_y^m y_{i,t} + \mathbf{b} \cdot \mathbf{X}' + u_{p,i,t}^m$$

	Female weekly hours				Male Participation	
	Male works		Male out of work			
	т	С	т	С	т	С
Imputed Wage man	-0.002	-0.039	-1.292	-1.917	0.008	0.007
	(0.491)	(1.690)	(3.885)	(11.594)	(0.0002)	(0.0002)
Imputed Wage woman	0.369	0.376	-5.621	-4.385	0.019	0.031
	(3.240)	(4.895)	(18.006)	(29.383)	(0.012)	(0.009)
Non labor income	0.004	-0.014	-0.107	-0.065	0.0002	0.001
	(0.024)	(0.027)	(0.340)	(0.330)	(0.0002)	(0.0002)
Year Effect	Yes		Yes		Yes	
Control variables	Yes		Yes		Yes	
N	6,712	7,693	2,736	3,058	9,448	10,751

The S.E. have been computed using the bootstrap with 1000 repetitions and allowing for the fact that male and female wages as well as other income are predicted.

Muñoz-Alvarado (TSE)